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Abstract. The choice of a representative state in an incomplete quantal state determination 
is reconsidered and two main possibilities, the most probable and the expected representa- 
tive state are compared. It is shown that probability densities over a set of states, underlying 
an expected state, are in complete agreement with the standard quantal formalism. 
Examples for some simple densities are given and discussed. 

1. Introduction 

In this paper we will reconsider the choice of a representative state (RS) in an incomplete 
state determination (sD). This problem has been discussed by Jaynes (1957), Wichmann 
(1963) and by Park and Band (1976). We will adopt the point of view proposed by 
the last authors. However, the projection postulate (von Neumann 1955) will be 
explictly used throughout and the result will be a more formal, geometrised description 
of a SD. 

A brief exposition of the problem may be the following one. The choice of a RS 

has two parts. The first one is to obtain, from the results of different quantal measure- 
ments, a set of admissible states for the inspected ensemble which is described by a 
fixed but unknown state. The second part based on some further assumptions about 
the state of the inspected ensemble should result in the very choice of a RS out of the 
set of admissible ones. The essential assumption is that the inspected ensemble is 
available in a large number of replicas which should be subjected to different measure- 
ments. A RS will describe a replica which has not been inspected by an observer. 

The paper is organised as follows. In 0 2 we will give a brief description of the set 
of states, measurements and SD in a finite-dimensional case. Section 3 contains an 
analysis of the standard, maximum entropy RS which is followed by the definition of 
an ‘expected’ RS proposed by Park and Band (1976) and Band and Park (1976). In 
§ 4 we will give some simple relations between ‘expected’ states and their standard 
quantal counterparts. In § 5 four examples of probability densities, underlying any 
expected state, will be inspected. 

2. States and their description 

In this section we will reconsider the set of states in a finite-dimensional case (cf 
Harriman 1978, IvanoviC 198 1). 

To every collection of quantal systems, one can assign a state W, W 2 0, Tr( l@) = 1, 
which will describe all relevant properties of the collection mentioned. 

A A  
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It is useful to think of these states as elements of the real vector space of Hermitian 
operators acting on the Hilbert space Hlatiachec to the inspected ensemble. This real 
vector space will be denoted by Vh = {A(A' = A}.  Introducing the scalar product as (a, 6) = T r ( a 6 )  and normilall = (Tr(A2))"2, v h  becomes an  n2-dimensional real 
Euclidian space, where n is the* dilmensionaljty of the underlying vector space H. 

The set of all states ,Vw = j  w( w 3  0, Tr( w) = 1)  is a convex set in v h .  Its extrema1 
points are pure states, W2 = W, i.e. they are one-dimensional projectors; we will denote 
them by a properly indexed @. 

A non-degenerate observable A = x ; , a k @ k  will induce an  orthonormalised basis in 

(1) 

where matrix eleyents of gmmk are [ g m k ] r s  = 8 m r &  in the basis in which @k = gkk.  In 
particular, by v h ( {  p k } )  we will denote the n-dimensional subspace of mutually commut- 
ing operators. Furthermore v,({ P k } )  = v,. n vh({@k}) will be the convex set of mutually 
commuting states, coinciding with a regular n-dimensional simplex. 

If an  enszmble isPescribed b x a  state $ in the measurement of a non-degenerate 
observable A = 

v h  ; 
4, l s k s n ,  6:i = ( 2 ) - " 2 ( 6 k m  + g m k ) ,  

rti = i(21-I'~ (;km - ;mk), l s k < m s n  

the state W will suffer the change (von Neumann 1955) 

$+ $'=Xk@k$@k E vW({@k}).  (2) 

In V,, equation (2) is the orthogonal projection of $ into V.({@k}) and  this projection 
$' lies in vw({Fk>). 

On the other hand, a state determination (SD) is an  attempt to assign a state to 
an ensemble of quantal systems from the results of different quantal measurements. 
We will assume that all measurements are in accordance with (2). When a SD results 
in a single state it is a complete SD, otherwise it is an  incomplete SD. Generally a SD 

pcocedure composed out of N measurements, e.g. corresponting to the observables 
{A('' = Xka(kS)?Y)} 1 s s s N will r y l t  in a complete SD only if { Pf'}1 k s n ; 1 s s s N 
contains a basis for v h .  Then {A")} is a quorum in v h  (Park and  Band 1971). 

A simple case of?n incpmplete SD may occur when the result of a single measurement 
is a mixed state ( W2 # W) and when tcis result is used for it SD. Let this state be 
$ ( ' ) = ~ k ~ i ' ' + , , @ i ' )  so that $ ( I ) =  Z k W k P l f )  the projection of W, into v,({@k}) is the 
only res$* onel has. The only co9clusion is that @,,E V w ( $ ( ' ) ) =  

{ w l ~ k @ ~ ) w p i ' ) =  W " ) } .  The convex set Vw( w'") will be called the set of admissible 
states for W"'. Aft5r k measyrements the c2rresponding set of admissible states will 
'shrink' into Ww( W"', . . . , W'k') = n, V( W ( ' ) ) .  In the rest of this paper a set of 
admissible states will be denoted by V$ when a particular specification is not necessary. 
Such sets are always convex, they may have a lattice structure in the sense of the order 
relation '>' (cf Wehrl 1978) etc. 

Sometimes a need for a representative state (RS) $ R s ~  V$ may occur. Due to the 
fact that V$ exh:usts all objective (measurement based) information concerning the 
unknown state W,,, some further assumptions are necessary in order to obtain a 
reasonable RS. 

3. Representative state 

In this section we will start with the standard representative state (RS) (Jaynes 1957, 
Wichmann 1963). 
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The standard, maximum entropy RS, GRS€ V$ is 

k R S :  s(kRs)>s(@ V k E  v$ (3) 

where S(  @ = - 2 k w k  h ( w k )  is the entropy of k = Z k W k p k .  The assumptions underlying 
RS from (3) may be the following ones. 

(1) All eltmentary events concerning a single measurement e.g. P k  are equally 
probable, w ( p k )  = (1 / n ) .  

( 2 )  A sequence of N events pi,, . . . , pt, ( N  is a finite but very large number) where 
( N , /  N )  - w, is the relative frequency of PI, will occur with probability p such that 

A 

In(p) - ( I /  N ) S (  w , ,  . . . , w,) +constant. 

Assumptions (1) and (2) are only one of the ways to obtain the mainA assump*tion. 
(3) The RS is the most probable state assuming the density p( W) - S( W) to be 

valid over V$.  
The first important task is to justify the existence of probability distributions and 

densities over Vw Fortunately this follows from the fact that V, is an  Euclidian space 
allowing the lebesgue measure du  = d x ,  d x 2 .  . . dxk, k s n to be introduced in its 
k-dimensional subspace or a flat. Under these assumptions one may understand V ,  
as a classical sample space of the appropriate probability space in which elementary 
event is a point in V ,  i.e. a state. 

The seco?d important tasb is then siTple, namely one may assume the existence 
of some p(  W) satisfying p(  W)> 0, 5 p( W) dv = 1 and  one may define the expected 
state as 

2 

being a ,con:inu,ous convex combination of @ E  V ,  (clearly, G = x k w k @ k  = 

In this paper we will adopt and inspect the proposal of Park and  Band that a RS 

x k  5 W k 6 (  w- P k )  w du). 

may be chosen as the expected state under the assumed p( @ for 6' E V$ as 

where du  in (4) is the elementary volume in a properly chosen flat in V,. For exfmple 
V ,  has zero volume in V, and one must calculate it in the hyperplane h(a*ITr(A) = 1) 
where V,  is an ( n 2 -  1)-dimensional convex body, etc. 

The choice of p( @ may follow from quite different assumptions and  in fact it will 
be tested by a SD procedure. Some initial p ( @ ,  after obtaining some V$ from 
measurements, will change into the new density 

We will conclude this section by noting that the difference between (3) and (4) is 
almost identical to the difference between the corresponding concepts for a classical 
stochastic variable. Therefore, one's choice between the most probable RS (e.g. equation 
(3)) and an expected state (equation (4)) will probably depend on the number of systems 
in a replica of the inspected ensemble and  on the stability of the measurement results. 
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4. Densities and standard quantal formalism 

In this section we will reconsider some general aspects of the assumed densities over 
V, and their relationship to the standard quantal description. 

To start with, we will choose a basis in v h  such as that in equation (1). Then, any 
@E Vw may be expressed as 

@ ( a ] ,  . . . , f f n 2 ) = x k a k F k  + x k ( Y k 8 . ( k r ’ + x k ( Y k G i )  

where 
* ( r )  * ( I )  & ( I )  - * ( I )  * ( I )  * ( i )  *( I )  * ( i  

(+I2 = ( + k = n + l ,  13 - ( + n + 2 ,  * * . 3 (+I2 = ( + n ( n + I ) / , + l ,  . . . 9 I + n - l , n  

Furthermore let a density, given in the same basis be p ( a l , .  . . , a,2) so that 

where ( a k ) = J  a k p ( a )  du. 
Calculation of ( a k )  may be extremely difficult, however, if one is able to Calculate 

The first question may be: how p(@)  affects a single measurement e.g. that of 
= x i a k F k .  The first part of the answer will be to calculate the marginal density over 

( ( Y k ) ,  relations with the standard quantal notions will be almost trivial. 

v w ( { p k } )  defined by the chosen observable a as 

p ( a l , .  . . , a,) = p ( a l , .  . . , an>) da,,,] d a , + , . .  . da,2. I 
This allows one to determine the expected state for a single measurement procedure as 

( 7 )  

A simple consequence of (6) and (7) is that @: = x k f i k @ E s i ; k  where both states, @b 
and WEs are obtained from the same density; Obviously, this is an indirect way of 
saying that for an observable, let it again be A = x k a k ? k  

WL = W ( a , ,  . . . , a,)p(a,, . . . , a,) d a l  d a ,  . . . d a n  = x k ( a k ) f i k  
* I- 

i (a),,+,= p ( a ) T r ( a @ ( a ) ) d v = T r ( 6 ’ ~ , a ) = T r ( ~ b a )  

Indeed, Tr(AW(a))=X:=l a k a k  hence j p ( a )  Tr(.d@(a)) dv =E:=, a k ( a k ) .  Clearly it 
may happen that p ( a I ,  . . . , a,, 0 ,  . . . , 0 )  = o i.e. p( @ = o v @ E v,({ F k } )  still 
p(a l , .  . . , a,) will be a proper density satisfying p(a)  d a l  d a ,  . . . da ,  = 1 (in these 
equations an = 1 - aI - ,  . . -  CY(^-^)). 

Furthermore the choice of a particular basis in v h ,  unitary equivalent to basis (1) 
should be unimportant due to the fact that dv = d a ,  . . . da,2 is invariant under all 
rotations in v h ,  a fortiori for those which correspond to the unitary transformations 
over H, i.e. when A ’ =  UAU’. 

We will conclude this section with a few remarks concerning the choice of an initial 
‘complete ignorance’ density. There are at least two proposals: p( @ - S(  @ underly- 
ing equation (3) and p( W): max j p( @) ln(p( @)/pi( @) dv proposed by Park and 
Band (1977). The first one has been inspected in § 3 while the second one, with an 
appropriately normalised density p i (  @ (cf equation ( 5 ) )  will result in p,( @. In this 
approach only one property of an initial p ( W )  is unavoidable, namely any sensible 
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p ( @  must satisfy that all p ( a )  are equal and this will be the case if and only if 
p( 6') = p( UWU') for every 6 and every 6' i.e. when p( 6') is unitarily invariant. 

Further specification of an initial 'complete ignorance' density should follow from 
possible information concerning the origin ofithe instected ensemble. If for example 
an ensemble is the result of a preparation p( W)- S( W) is an extremely well founded 
choice; if on the other hand the inspected ensemble is a subensemble of decay 
products (an improper mixture, cf d'Espagnat, 1976) an initial density p( 6') - (det( 6'))k 
will be, perhaps, more appropriate. 

A A A  

5. Four examples 

In this section we will examine four examples of some simple and 'natural' densities 
and their cpnsequ5nces; 

(1) p( W) = 6( W - WO). In this case 6'Es = 6'o and this density in fact corresponds 
to the preparation of GOAi.e. to the complete information concerninj the inspected 
ensemble. In some vw({pk}), 6( 6'- Go) will induce p( 6') = 6(  6'- Wb) where 6'; = 

(2) p(  W) = p( UWU') V 6' E V,, V fi, fifi+ = 1. As already stated, this property is 
a necessary part of any initial 'complet: ignorance' gensity. In this case marginal 
densities in two different subspaces vh({&}) and vh({PL}) will be 

x k  9 6 ' 0 4 ;  A A A  

P ( a l , . . . . a n ) = l  p(a)dak>n and P ( f l )= /P ( f l )dpk>n  

where a = { a l ,  . . . , an2} are coordinates in the basis in y h  induced by {gk} while 
p = { p i , .  . . , pn2} are coordinates in the basis induced by {PL} (cf equatioCJl1). Dye 
to the fact that p( Lk) = p( UWU'), p ( a )  = p ( p )  whenever a = p. Alzo if U&?+= P ;  
then fiG&fi+= GL, where 6'L is the expected state in vw({pk}) and Wb1 in 
V,({&}). On the other hand all expected states 6'& are projections of a single WEs. 
The only state satisfying this condition i.e. that all its projections are unitarily equivalent 
is @= ( l / n ) i ,  hence for any unitarily invariant density p( 

An initial 'complete ignorance' density may be e.g. p( Lk) = (U( V,))-' V 6' E V, 
where U( V,) is the volume of V, (calculated of course in the hyperplane h(alTr(a) = 1). 

There is an interesting property of the unitarily equivalent densities when V$ is 
the result of measurements and when V$ is also unitary invariant i.e. f i V $ f i + =  V$, 
for some non-trivial fi. In such case the most probable state and the expected state 
will coincide. 

(3) In this example we will reconsider a composite system ensemble. Every system 
is composed out of two subsystems, each one described in a three-dimensional vector 
space, e.g. HI and H2.  The system is then described in HI 0 H2. For simplicity, we 
will assume that 

A A A  

6': = ( l / n ) f .  

(a) the unknoyn staie is a pure one, 
(b) that [Tr,(P"*'), Af'] = 0. 

(c) all states from Vo are equally probable. 
The measurements will be performed on the ensemble of first ('1') subsystems and 

Now, let the measurements obtained in VCad defined by 

(the set of states defined by (a) and (b) will be denoted Vo), and 

the task will be to find a RS in V($. 

(8) =.L($ ' ,~ )+@(I )+F(~) )  + ~ ( ~ ( l ) r + e $ ; ) r )  
3 3 12 
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The set VOad defined by (8) is the segment of which the extremal points are @CO] and 
@(($~-l’~). BY I W k ( a ) )  and W k ( a ]  we will denote eigenvectors and eigenvalues of ~ ( a ) .  
Then W (  a) = Tr2( PjL:)) where Pi::) is the projector on the vector 

I$:;)) = x k  ( w ( a ) k ) ’ / 2  exp(i+k)l w k ( a ) ) @ l a O k )  

where laok) are eigenvectors of, the observable #) from (b) while +k are variables. 
Condition (c) will give that p(W(a) )=  p ( a )  is proportional to the volume of states in 
Vcc)  which will reduce into W ( a ) .  In this case the volume is in fact a surface similar 
to a torus. After simple calculation one obtains 

p(a)=cOnStant x ( x k w k ( ( Y ) )  n w k ( a )  ( k ) ‘ I 2  

- (a( (2 /9)”* - a))‘”, 

so that $Es = y (a )p (a )  d a  = @(a = (18)-”2). On the other hand the maximum 
entropy state is W ( a  “0, 147). 

(4) In the last example we will assume that V$ is given through 2n in5quality e.g. 
( i z ) 3 0  for a spin f partLcle. The maximum entropy RS will be W = q I  while the 
expected state $Es = g P ( z ,  +) +&fi(z,  -) assuming that all states @ satisfying 
Tr( @iz) 2 0 are equally probable. 

These examples should show that the difference between the most probable state 
and an expected state may p u r  inAsome simple examples. Example (3) shows that 
a density different from p( W) - S( W) will occur when an ensemble of the correlated 
subsystems is inspected. In (4) the most probable state lies on the boundary of V$,  
which will never occur with an expected state, still a decisive, general answer on the 
question ‘When to use the most probable state and when to use an expected state?’ is 
not given in this note. Namely, such an answer will be possible only if a better 
knowledge of a stochasticity in the inspected ensemble can be obtained. However, it 
is possible to identify two extremal cases: if the results obtained from the measurements 
are assumed to be the result of a single trial the most probable state will be the more 
appropriate choice; if, on the other hand the same set of procedures is assumed to be 
a set of repeated trials, an expected state will be more appropriate. 

6. Summary 

The inspected, expected RS, may be useful as an alternative to the most probable RS 

of which equation (3) is the most frequent case. As already stated the choice between 
these RSS will be much easier if a better understanding of an inspected ensemble is 
possible. 

A serious obstacle concerning an expected RS is the fact that it is much easier to 
obtain the most probable RS than an expected state. Nevertheless a proper quantal 
approach to this problem can hardly avoid such difficulties. 
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